Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Orhan Büyükgüngör ${ }^{\text {a }}$ and Mustafa Odabașoğlu ${ }^{\mathbf{b}}$ *

${ }^{\text {a }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.141$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Methylpiperidin-1-yl)isobenzofuran-1(3H)-one

The crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$, is stabilized by three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and one $\pi-\pi$ interaction. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate an edge-fused $\left[R_{3}^{3}(13) R_{4}^{2}(14) R_{3}^{3}(13)\right]$ ring motif.

Comment

The present work is part of a structural study of compounds of 3 -substituted phthalides and we report here the structure of 3-(4-methylpiperidin-1-yl)isobenzofuran-1(3H)-one, (I) (Fig. 1).

(I)

The phthalide group ($\mathrm{C} 1-\mathrm{C} 8 / \mathrm{O} 2$) is essentially planar, the largest deviation from the mean plane being 0.033 (1) \AA for atom O2. The six-membered N1/C9-C13 ring has a chair conformation, as evidenced by the puckering parameters (Cremer \& Pople, 1975) $\Phi_{2}=223(4)^{\circ}, Q_{2}=176.04(3)^{\circ}$ and $Q_{\mathrm{T}}=0.564$ (2) \AA.

The crystal packing is stabilized by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) and also by $\pi-\pi$ interactions. The intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate an

Figure 1
A view of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radii.

Received 9 June 2006 Accepted 14 June 2006

3-Substituted phthalides, Part XII
\qquad

Figure 2
A packing diagram for (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions, represented as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) $-x$, $y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y+1,-z+1$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.]
$\left[R_{3}^{3}(13) R_{4}^{2}(14) R_{3}^{3}(13)\right]$ ring motif (Etter, 1990). The $\pi-\pi$ interaction occurs between the six- and five-membered rings of the phthalide system at $(-x, 2-y,-z)$, with a centroid-tocentroid distance of $3.6654(14) \AA$ and a plane-to-plane separation of $3.500 \AA$.

Experimental

The title compound was prepared as described by Odabaşoğlu \& Büyükgüngör (2006) using phthalaldehydic acid and 4-methylpiperidine as starting materials (yield 80%; m.p. 371-372 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a dimethylformamide solution at room temperature.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=231.29$
Monoclinic, $P 2_{1} / c$
$a=12.7916(11) \AA$
$b=8.0661(11) \AA$
$c=12.3650(11) \AA$
$\beta=90.266(7)^{\circ}$
$V=1275.8(2) \AA^{3}$
$Z=4$
$D_{x}=1.204 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colorless $0.62 \times 0.49 \times 0.33 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.954, T_{\text {max }}=0.976$
17106 measured reflections 2504 independent reflections 1663 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.101$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}\right. \\
& +0.1775 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& \Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0097 \text { (19) }
\end{aligned}
$$

$w R\left(F^{2}\right)=0.142$
$S=1.10$
2504 reflections
155 parameters
H-atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.58	$3.314(3)$	136
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 5 \cdots \mathrm{O}^{2 i}$	0.93	2.55	$3.449(3)$	162
$\mathrm{C}^{\mathrm{Hii}} \mathrm{H} 8 \cdots 1^{1 i}$	0.98	2.53	$3.479(3)$	164

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.
All H atoms were treated as riding on their parent atoms, with $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$ for aromatic H atoms, $0.98 \AA$ for methine H atoms and $0.97 \AA$ for methylene H atoms $\left[\right.$ all $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$], and $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ for methyl H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

